Bio inspired computing - A review of algorithms and scope of applications

نویسنده

  • Arpan Kumar Kar
چکیده

With the explosion of data generation, getting optimal solutions to data driven problems is increasingly becoming a challenge, if not impossible. It is increasingly being recognised that applications of intelligent bio-inspired algorithms are necessary for addressing highly complex problems to provide working solutions in time, especially with dynamic problem definitions, fluctuations in constraints, incomplete or imperfect information and limited computation capacity. More and more such intelligent algorithms are thus being explored for solving different complex problems. While some studies are exploring the application of these algorithms in a novel context, other studies are incrementally improving the algorithm itself. However, the fast growth in the domain makes researchers unaware of the progresses across different approaches and hence awareness across algorithms is increasingly reducing, due to which the literature on bio-inspired computing is skewed towards few algorithms only (like neural networks, genetic algorithms, particle swarm and ant colony optimization). To address this concern, we identify the popularly used algorithms within the domain of bioinspired algorithms and discuss their principles, developments and scope of application. Specifically, we have discussed the neural networks, genetic algorithm, particle swarm, ant colony optimization, artificial bee colony, bacterial foraging, cuckoo search, firefly, leaping frog, bat algorithm, flower pollination and artificial plant optimization algorithm. Further objectives which could be addressed by these twelve algorithms have also be identified and discussed. This review would pave the path for future studies to choose algorithms based on fitment. We have also identified other bio-inspired algorithms, where there are a lot of scope in theory development and applications, due to the absence of significant literature. Author Details: Arpan Kumar Kar (Corresponding Author) Information Systems area, DMS, Indian Institute of Technology Delhi Email: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Idle Speed Control of a Natural Aspirated Gasoline Engine Using Bio-inspired Meta- heuristic Algorithms

In order to lowering level of emissions of internal combustion engines (ICEs), they should be optimally controlled. However, ICEs operate under numerous operating conditions, which in turn makes it difficult to design controller for such nonlinear systems. In this article, a generalized unique controller for idle speed control under whole loading conditions is designed. In the current study, in...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Bio-inspired cost-aware optimization for data-intensive service provision

The rapid proliferation of enormous sources of digital data and the development of cloud computing have led to greater dependence on data-intensive services. Each service may actually request or create a large amount of data sets. The scope, number, and complexity of data-intensive services are all set to soar in the future. To compose these services will be more challenging. Issues of autonomy...

متن کامل

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2016